An efficient data mining approach for discovering interesting knowledge from customer transactions

نویسندگان

  • Show-Jane Yen
  • Yue-Shi Lee
چکیده

Mining association rules and mining sequential patterns both are to discover customer purchasing behaviors from a transaction database, such that the quality of business decision can be improved. However, the size of the transaction database can be very large. It is very time consuming to find all the association rules and sequential patterns from a large database, and users may be only interested in some information. Moreover, the criteria of the discovered association rules and sequential patterns for the user requirements may not be the same. Many uninteresting information for the user requirements can be generated when traditional mining methods are applied. Hence, a data mining language needs to be provided such that users can query only interesting knowledge to them from a large database of customer transactions. In this paper, a data mining language is presented. From the data mining language, users can specify the interested items and the criteria of the association rules or sequential patterns to be discovered. Also, the efficient data mining techniques are proposed to extract the association rules and the sequential patterns according to the user requirements. q 2005 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Customer Attraction Prediction in Customer Relation Management using Decision Tree: A Data Mining Approach

In Today’s quality- based competitive world, known as knowledge age, customer attraction is of ultimate importance. In respect to the slogan “customer is always right”, customer relation management is the core of an organizational strategy playing an important role in four aspects of customer identification, customer attraction, customer retaining, and customer satisfaction. Commercial organiza...

متن کامل

Mining Sequential Patterns with Item Constraints

Mining sequential patterns is to discover sequential purchasing behaviors for most customers from a large amount of customer transactions. Past transaction data can be analyzed to discover customer purchasing behaviors. However, the size of the transaction database can be very large. It is very time consuming to find all the sequential patterns from a large database, and users may be only inter...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

Fast Algorithms for Mining Interesting Frequent Itemsets without Minimum Support

Real world datasets are sparse, dirty and contain hundreds of items. In such situations, discovering interesting rules (results) using traditional frequent itemset mining approach by specifying a user defined input support threshold is not appropriate. Since without any domain knowledge, setting support threshold small or large can output nothing or a large number of redundant uninteresting res...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2006